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AVERAGE PRIME-PAIR COUNTING FORMULA

JAAP KOREVAAR AND HERMAN TE RIELE

Abstract. Taking r > 0, let π2r(x) denote the number of prime pairs (p, p+
2r) with p ≤ x. The prime-pair conjecture of Hardy and Littlewood (1923) as-

serts that π2r(x) ∼ 2C2r li2(x) with an explicit constant C2r > 0. There seems
to be no good conjecture for the remainders ω2r(x) = π2r(x)−2C2r li2(x) that
corresponds to Riemann’s formula for π(x)−li(x). However, there is a heuristic
approximate formula for averages of the remainders ω2r(x) which is supported
by numerical results.

1. Introduction

For r ∈ N, let π2r(x) denote the number of prime pairs (p, p + 2r) with p ≤ x.
The famous prime-pair conjecture (PPC) of Hardy and Littlewood [12] asserts that
for x → ∞,

(1.1) π2r(x) ∼ 2C2rli2(x) = 2C2r

∫ x

2

dt

log2 t
∼ 2C2r

x

log2 x
.

Here C2 is the ‘twin-prime constant’,

(1.2) C2 =
∏

p prime, p>2

{
1− 1

(p− 1)2

}
≈ 0.6601618158,

and the ‘general prime-pair constant’ C2r is given by

(1.3) C2r = C2

∏
p prime, p|r, p>2

p− 1

p− 2
.

Assuming that the PPC is true, let ω2r(x) denote the remainder

(1.4) ω2r(x)
def
= π2r(x)− 2C2rli2(x).

We have not been able to find a good approximation for the remainder ω2r(x) that
corresponds to Riemann’s approximate formula for π(x) − li(x) (see (1.9) below).
Instead, by complex analysis and heuristic arguments, we obtain the following plau-

sible approximation for averages (1/N)
∑N

r=1 ω2r(x) with large N (cf. Section 5),
and we support the formula by extensive numerical results.
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Approximation 1.1. For N ≥ 1 and x ≥ N2+δ, with 0 < δ ≤ 1, one has

(1.5)

1

N

N∑
r=1

{π2r(x)− 2C2rli2(x)} = −{4 +O(N−1/2 log x)}
∑
ρ

ρ li2(x
ρ)

− {1 +O(N−1/2 log x)}li2(x1/2) +O(x1/(2+δ)),

with a symmetric sum over the complex zeros ρ of ζ(s).

To test this conjectured approximation we observe that

(1.6)

∑
ρ ρ li2(x

ρ)

li2(x1/2)
=

{
1

4
+O

(
1

log x

)}
T (x) +O

(
1

log x

)
, where

T (x)
def
=

∑
ρ

xρ−1/2

ρ
is real-valued;

cf. Section 6. Neglecting the O-terms in (1.5) and (1.6), dividing by li2(x
1/2), and

adding T (x) + 1, we obtain the error function

(1.7) ∆N (x)
def
=

∑N
r=1 ω2r(x)

N li2(x1/2)
+ T (x) + 1.

We have evaluated and plotted this function for fixed x = 106, 108, 1010, 1012 and
2 ≤ 2N ≤ 5000 (Figures 1–4 in Section 7), and for fixed N = 400, 2500 and
6 ≤ log10 x ≤ 12 (Figures 5–6 in Section 7). Taking into account the O-terms in
(1.5) and (1.6), ∆N (x) should have the form

O
(
N−1/2(log x) + 1/ log x

)
T (x) +O

(
N−1/2(log x) + 1/ log x

)
.

Our four plots for fixed x, and the two for fixed N , show that Approximation 1.1
is good for large N , provided x/N2 is large.

When x is comparable to N2, the theory predicts a sizeable deviation, roughly

(1.8) ∆N (x) ≈ ∆N (x)
def
= − 2N log2 x

8x1/2 log2 2N
;

see Section 5. Behavior of this type is seen in the plots for x = 106 and 108.
In connection with (1.5), we recall Riemann’s approximation for the remainder

π(x)− li(x). If Re ρ = 1/2 for all ρ one has

(1.9) ω(x)
def
= π(x)− li(x) = −

∑
ρ

li(xρ)− (1/2) li(x1/2) +O(xb),

where b may be any number greater than 1/3. This can be derived from von
Mangoldt’s formula

(1.10) ψ(x)
def
=

∑
n≤x

Λ(n) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
+
∑
k

x−2k

2k
;

cf. Davenport [8], Edwards [9], and Ivić [14]. Recall that von Mangoldt’s function
Λ(n) is equal to log p if n = pα with p prime, and equal to 0 if n is not a prime
power. Formula (1.10) is exact at all points x > 1 where ψ(x) is continuous.
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PART I. HEURISTICS

2. First step towards conjectured Approximation 1.1

Let us start by introducing the functions

(2.1)

ψ2r(x)
def
=

∑
n≤x

Λ(n)Λ(n+ 2r), θ2r(x)
def
=

∑
p, p+2r prime; p≤x

log2 p,

θ∗2r(x)
def
=

∑
p, p2±2r prime; p≤x

log2 p.

Partial summation or integration by parts shows that the PPC (1.1) is equivalent
to each of the asymptotic relations

(2.2) θ2r(x) ∼ 2C2rx, ψ2r(x) ∼ 2C2rx as x → ∞.

We have counted the prime pairs (p, p + 2r) with 2r ≤ 5 · 103 and p ≤ x =
103, 104, . . . , 1012. Table 1 is based on this work; cf. also a table in Granville and
Martin [11] and one by Fokko van de Bult [7]. The bottom line shows (rounded)
values of the comparison function

L2(x)
def
= 2C2li2(x) for π2(x).

Computations based on these prime-pair counts make it plausible that for every
r ∈ N and every ε > 0,

(2.3) ω2r(x) = π2r(x)− 2C2rli2(x) = O(x(1/2)+ε).

Equivalently, there would be relations

(2.4) Ω2r(x)
def
= ψ2r(x)− 2C2rx = O(x(1/2)+ε′

),

which follow from similar estimates for θ2r(x)− 2C2rx.
Our work requires a good estimate for the difference ψ2r(x)− θ2r(x). The non-

vanishing terms Λ(n)Λ(n + 2r) of ψ2r(x) have the form log p log q, where p and
q are distinct primes. We distinguish four cases: (1) n = p, n + 2r = q; (2)
n = p2, n+2r = q; (3) n = p, n+2r = q2; (4) n = pα, n+2r = qβ with α+β ≥ 4.
Taking x > 2r we compare the sum for case (1) with θ2r(x):∑

p≤x; p+2r prime

{log p log(p+ 2r)− log2 p} =

∫ x

2

log t log(1 + 2r/t) dπ2r(t)

=

∫ x

2r

+

∫ 2r

2

= 4rC2r log log x+O(rC2r/ log 2r).

The contributions to ψ2r(x) from cases (2) and (3) are, respectively,∑
p2≤x; q=p2+2r

log p log q ≈ 2
∑

p≤x1/2; p2+2r prime

log2 p,

∑
p≤x; q2=p+2r

log p log q ≈ 2
∑

q≤(x+2r)1/2; q2−2r prime

log2 q.

Here the factors 2 come from the fact that q ≈ p2 in the first formula, and p ≈ q2 in
the second. The sum of the two contributions is well-approximated by 2θ∗2r(x

1/2);
see (2.1). Finally, we consider case (4). If α = β = 2 so that q2 − p2 = 2r, one has
q + p ≤ r and log p log q < log2 r, while the number of possibilities for p and q is
bounded by d(r) = O(rε). When α ≥ 3 or β ≥ 3, one of the primes p, q is O(x1/3).
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The total contribution to ψ2r(x) in case (4) can then be estimated as O(rε log2 r)
+ O(x1/3 log2 x). Summarizing, one finds that uniformly in r,

ψ2r(x)− θ2r(x) = 2θ∗2r(x
1/2) + 4rC2r log log x

+O(rC2r/ log 2r) +O(x1/3 log2 x).(2.5)

Our first goal will be to motivate the following heuristic.

Approximation 2.1. Taking N large and x much larger than N , one has

(2.6)

1

N

N∑
r=1

{ψ2r(x)− 2C2r x} = −{4 +O(N−1/2 log x)}
∑
ρ

xρ

ρ

+O(N−1/2x1/2 log x)− {1 + o(1)}N.

The step from Approximation 2.1 to Approximation 1.1 will be carried out in
Section 5.

In support of the conjectured Approximation 2.1 we will derive a related conjec-
ture involving Dirichlet series. For s = σ + iτ with σ > 1/2, set
(2.7)

D2r(s)
def
=

∞∑
n=1

Λ(n)Λ(n+ 2r)

n2s
=

∫ ∞

1

x−2sdψ2r(x) = 2s

∫ ∞

1

x−2s−1ψ2r(x)dx.

Here we use the denominator n2s (and not ns) because of the function Φλ(s) in
Theorem 3.1 and the corresponding integral in (8.2).

2r\x 103 104 106 108 1010 1012 C2r/C2

2 35 205 8169 440312 27412679 1870585220 1
4 41 203 8144 440258 27409999 1870585459 1
6 74 411 16386 879908 54818296 3741217498 2
8 38 208 8242 439908 27411508 1870580394 1
10 51 270 10934 586811 36548839 2494056601 4/3
12 70 404 16378 880196 54822710 3741051790 2
14 48 245 9878 528095 32891699 2244614812 6/5
16 39 200 8210 441055 27414828 1870557044 1
18 74 417 16451 880444 54823059 3741063106 2
20 48 269 10972 586267 36548155 2494072774 4/3
22 41 226 9171 489085 30459489 2078443752 10/9
24 79 404 16343 880927 54823858 3741122743 2
30 99 536 21990 1173934 73094856 4988150875 8/3
210 107 641 26178 1409150 87712009 5985825351 16/5

L2(x) : 46 214 8248 440368 27411417 1870559867

Table 1. π2r(x) for selected values of 2r and x
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By a two-way Wiener–Ikehara theorem for Dirichlet series with positive coeffi-
cients, the PPC in the form (2.2) is true if and only if the difference

(2.8) G2r(s)
def
= D2r(s)−

2C2r

2s− 1
=

∫ ∞

1

x−2sdΩ2r(x) = 2s

∫ ∞

1

x−2s−1Ω2r(x)dx

has ‘good’ boundary behavior as σ ↘ 1/2. That is, G2r(σ + iτ ) should tend to a
distribution G2r{(1/2)+iτ} which is locally equal to a pseudofunction; see Korevaar
[15]. Here, a pseudofunction is the distributional Fourier transform of a bounded
function which tends to zero at infinity. It cannot have poles and is locally given
by Fourier series whose coefficients tend to zero. In particular, D2r(s) itself would
have to show pole-type behavior, with residue C2r, for angular approach of s to 1/2
from the right; there should be no other poles on the line {σ = 1/2}.

In view of the expected estimate (2.4) it is reasonable to suppose that the dif-
ference G2r(s) is actually analytic for σ > 1/4. Where would one expect the first
singularities? Assuming Riemann’s Hypothesis (RH), we will motivate a conjecture
involving averages of functions G2r(s):

Conjecture 2.2. For σ > 1/4 and N → ∞, one has

(2.9)

1

N

N∑
r=1

G2r(s) =
O(N−1/2)

(4s− 1)2
+

O(N−1/2)

4s− 1
+O(N−1/2)

∑
ρ

1

(2s− ρ)2

− {4 +O(N−1/2)}
∑
ρ

1

2s− ρ
+HN (s),

with symmetric sums over zeta’s complex zeros ρ. The remainder HN (s) has ‘good’
boundary behavior as σ ↘ 1/4. For large N its most significant part may be a term
−{1 + o(1)}N .

This conjecture motivates Approximation 2.1 through formal Fourier inversion;
cf. (2.8). If L(c) denotes a ‘vertical line’ given by σ = c > 1/4, then

(2.10) Ω2r(x) =
1

2πi

∫
L(c)

G2r(s)x
2s ds

s
.

3. The theorem behind Conjecture 2.2

To arrive at (2.9) we start with a result for a weighted sum of functions D2r(s);
cf. [16], where there is a less precise result. The weights are derived from an even
‘sieving function’ E(ν), with E(0) = 1 and support [−1, 1], that can be made
to approach 1 on (−1, 1). A minimal smoothness requirement is that E(ν) be
absolutely continuous, with derivative E′(ν) of bounded variation.

Theorem 3.1. Assume RH. Then for λ > 0 and 1/2 < σ < 1,

Φλ(s)
def
= D0(s) + 2

∑
0<2r≤λ

E(2r/λ)D2r(s)

=
2AEλ

2s− 1
− 4AEλ

∑
ρ

1

2s− ρ
+Σλ(s) +Hλ

0 (s).(3.1)

The function D0(s) is obtained from (2.7) by taking r = 0, and the constant AE is

given by
∫ 1

0
E(ν)dν. The function Σλ(s) = Σλ,E(s) is given by a sum which will

be described below, and the remainder Hλ
0 (s) = Hλ,E

0 (s) is analytic for 0 < σ < 1.
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For large λ its most significant part may be a term that behaves like −λ2/2 when
E(ν) is close to 1 on (−1, 1).

The proof of this theorem is described in the Appendix (Section 8). The function
D0(s) above can be written as follows:

(3.2) D0(s) =

∞∑
n=1

Λ2(n)

n2s
=

1

2

d

ds

{
ζ ′(2s)

ζ(2s)
− 1

2

ζ ′(4s)

ζ(4s)

}
+H1(s),

where H1(s) is analytic for σ > 1/6. Hence D0(s) is meromorphic for σ > 1/6. Its
poles there are purely quadratic, and located at s = 1/2, 1/4 and the points ρ/2.
Thus by (3.1), and under assumption (2.4), the pole of the difference Σλ(s)−D0(s)
at s = 1/2 can only be of first order. Under (2.4) the residue R(1/2, λ) will be
equal to

(3.3) 2
∑

0<2r≤λ

E(2r/λ)C2r −AEλ, which we call R
E
0 (1/2, λ).

We need the important fact that the constants C2r have mean value one. Stronger
results were obtained by Bombieri–Davenport [5] and Montgomery [19], and these
were later improved by Friedlander and Goldston [10] to

(3.4) Sm
def
=

m∑
r=1

C2r = m− (1/2) logm+O{log2/3(m+ 1)}.

Partial summation in (3.3) will now show that for our sieving functions E, the
quantity R

E
0 (1/2, λ) is o(λ) and in fact, O(log λ) as λ → ∞.

The description of Σλ(s) requires a Mellin transform associated with the Fourier

transform Êλ(t) of E(ν/λ). For z = x+ iy with 0 < x < 1 we set

Mλ(z)
def
=

1

π

∫ ∞

0

Êλ(t)t−zdt

=
2

π
λzΓ(1− z) sin(πz/2)

∫ 1

0

E(ν)νz−1dz(3.5)

=
2

π
λzΓ(−z − 1) sin(πz/2)

∫ 1+

0

νz+1dE′(ν).

The function Mλ(z) extends to a meromorphic function for x > −1 with simple
poles at the points z = 1, 3, . . .. The residue of the pole at z = 1 is −2(λ/π)AE

with AE =
∫ 1

0
E(ν)dν, and Mλ(0) = 1. Furthermore, the standard order estimates

(3.6) Γ(z) 	 |y|x−1/2e−π|y|/2, sin(πz/2) 	 eπ|y|/2

for |x| ≤ C and |y| ≥ 1 (cf. Whittaker and Watson [24]) imply the useful majoriza-
tion

(3.7) Mλ(x+ iy) 	 λx(|y|+ 1)−x−3/2 for − 1 < x ≤ C, |y| ≥ 1.

Example 3.2. One may take E(ν/λ) equal to the Fejér kernel for R:

E(ν/λ) =
1

π

∫ ∞

0

sin2(λt/2)

λ(t/2)2
cos νt dt =

{
1− |ν|/λ for |ν| ≤ λ,
0 for |ν| ≥ λ.

In this case one finds

Mλ(z) =
2

π
λzΓ(−z − 1) sin(πz/2).
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The function Σλ(s). For any λ > 0, the function Σλ(s) is given by the sum

(3.8)

{
ζ ′(s)

ζ(s)

}2

+ 2
ζ ′(s)

ζ(s)

∑
ρ

Γ(ρ− s)Mλ(ρ− s) cos{π(ρ− s)/2}

+
∑
ρ′, ρ′′

Γ(ρ′ − s)Γ(ρ′′ − s)Mλ(ρ′ + ρ′′ − 2s) cos{π(ρ′ − ρ′′)/2}.

Here ρ, ρ′ and ρ′′ independently run over the complex zeros of ζ(s). It is convenient
to denote the sum of the first two terms by Σλ

1 (s); for 0 < σ ≤ 1 it has poles at s = 1
and the points ρ. For well-behaved functions Mλ(z), the double series defines a
function Σλ

2 (s) as a limit of square partial sums. Under RH the double series with
our normal Mλ(z) is absolutely convergent for 1/2 < σ < 3/2. Indeed, setting
ρ′ = (1/2) + iγ′, ρ′′ = (1/2) + iγ′′ and s = σ+ iτ , the inequalities (3.6), (3.7) show
that the terms in the double series are bounded by

C(λ, τ )(|γ′|+ 1)−σ(|γ′′|+ 1)−σ(|γ′ + γ′′|+ 1)−1+2σ−3/2.

Observing that the number of zeros ρ = (1/2)±iγ with n < γ ≤ n+1 is O(log n), cf.
Titchmarsh [23], the convergence now follows from a discrete analog of the following
simple lemma; cf. [16].

Lemma 3.3. For real constants a, b, c, the function

φ(y, v) = (|y|+ 1)−a(|v|+ 1)−b(|y + v|+ 1)−c

is integrable over R
2 if and only if a+ b > 1, a+ c > 1, b+ c > 1 and a+ b+ c > 2.

For integrability over R
2
+ the condition a+ b > 1 may be dropped.

By the lemma, the part of the double sum Σλ
2 (s) in (3.8) in which γ′ = Im ρ′

and γ′′ = Im ρ′′ have the same sign defines a meromorphic function for 0 < σ < 1
whose only poles occur at the complex zeros of ζ(·). Thus for a study of its pole-
type behavior near the point s = 1/2, the sum Σλ

2 (s) in (3.8) may be reduced to
the sum Σλ

3 (s) in which γ′ and γ′′ have opposite sign. Replacing γ′′ by −γ′′ and
using standard asymptotics for the Gamma function, it follows that the pole-type
behavior of Σλ

3 (s) and Σλ(s) as s ↘ 1/2 is the same as that of the reduced sum

(3.9) Σλ
4 (s) = 2π

∑
γ′>0, γ′′>0

(γ′γ′′)−s+i(γ′−γ′′)/2 Mλ{1− 2s+ i(γ′ − γ′′)}.

Hence in the study of the PPC under RH, the differences of zeta’s zeros in, say,
the upper half-plane, play a key role; cf. Montgomery [20].

Formally, the poles of Σλ(s) at the points s = ρ cancel each other. Under
assumption (2.4), the function Σλ

2 (s) has a meromorphic continuation to the half-
plane {σ > 1/4}, and then there will be real cancellation; see (3.1).

4. Motivation of Conjecture 2.2

As we saw, numerical results make it plausible that the functions G2r(s) in (2.8)
have an analytic continuation to the half-plane {σ > 1/4}. If this is correct, then
by Theorem 3.1 and (3.3), assuming RH, the function

Ψλ(s)
def
= 2

∑
0<2r≤λ

E(2r/λ)G2r(s) + 4AEλ
∑
ρ

1

2s− ρ

= Σλ(s)−D0(s)−
2RE

0 (1/2, λ)

2s− 1
+Hλ

0 (s)(4.1)
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will also have an analytic continuation to the half-plane {σ > 1/4}. In that case
the quadratic pole 1/(2s− 1)2 of D0(s) at s = 1/2 must be cancelled by a pole of
Σλ(s) at s = 1/2. By (3.8) the latter pole is the same as that of the double sum
Σλ

2 (s), and hence, of Σλ
4 (s) in (3.9).

Computation suggests that the quadratic part of the pole at s = 1/2 in Σλ
4 (s)

comes from the terms with γ′′ = γ′. Indeed, the counting function N(t) for zeta’s
complex zeros (1/2) + iγ in the upper half-plane satisfies the relation

2πdN(t) = {log t+ c1 +O(1/t)}dt+ 2πdS(t), S(t) = O(log t);

cf. Titchmarsh [23]. Thus for s = (1/2)+δ with small δ > 0, (3.9) with γ′ = γ′′ = γ
and (3.5) lead to the reduced sum

2π
∑
γ>0

γ−1−2δMλ(−2δ) = 2πλ−2δM1(−2δ)

∫ ∞

1

t−1−2δdN(t)

= (1− 2δ log λ+ · · · )(1 + c2δ + · · · )
(

1

4δ2
+

c1
2δ

+O(1)

)

=
1

4δ2
− log λ+O(1)

2δ
+ · · · .

Under assumption (2.4), the residue R(1/2, λ) of the pole of Σλ
2 (s) at s = 1/2

is equal to R
E
0 (1/2, λ). We know that the latter quantity is O(λε) as λ → ∞.

Independently of (2.4), the relation c−1(λ) = O(λε) for the coefficient of 1/(s−1/2)
in the expansion

Σλ
2 (s) =

c−1(λ)

s− 1/2
+ c0(λ) + · · ·

is made highly plausible by the following fact: λ occurs in the terms of the defining
series for Σλ

2 (s) only as λρ′+ρ′′−2s, which is O(λε) for s ≈ 1/2.
We now turn to the likely behavior of Ψλ(s) in (4.1) near the line L = {σ = 1/4}.

Since D0(s) has quadratic poles at the points s = 1/4 and ρ/2, and no other poles
on L, cf. (3.2), we assume that the (meromorphic continuation of the) double sum
Σλ

2 (s) likewise has poles at 1/4 and the points ρ/2, and nowhere else on L. This
assumption is plausible because it is known to be true for λ ≤ 2, when the sum over
r in (4.1) is empty, so that the difference Σλ

2 (s) − D0(s) has no poles on L other
than first-order poles at the points ρ/2. If the heuristic argument in the preceding
paragraph has general validity, one expects that the coefficients of the pole terms of
Σλ

2 (s) at 1/4 and the points ρ/2 are O(λ1/2), or in any case O(λ(1/2)+ε) for every

ε > 0. Indeed, the terms in Σλ
2 (s) contain λ as a factor λρ′+ρ′′−2s = O(λ(1/2)+ε)

for σ ↘ 1/4.
Hence by (4.1), taking the coefficient bound O(λ1/2) for simplicity, the sum

2
∑N

r=1 E(r/N)G2r(s) should behave like

O(λ1/2)

(4s− 1)2
+

O(λ1/2)

4s− 1

near the point s = 1/4, and like

O(λ1/2)

(2s− ρ)2
− 4AEλ+O(λ1/2)

2s− ρ
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near the points s = ρ/2. Assuming uniformity here relative to ρ, and taking
λ = 2N , the singular part of the average

1

N

N∑
r=1

E(r/N)G2r(s)

for σ ≥ 1/4 will have the form

1

N

N∑
r=1

G2r(s) =
O(N−1/2)

(4s− 1)2
+

O(N−1/2)

4s− 1
+O(N−1/2)

∑
ρ

1

(2s− ρ)2

− {4AE +O(N−1/2)}
∑
ρ

1

2s− ρ
+HN (s).

The remainder HN,E(s) will have good boundary behavior as σ ↘ 1/4, and it

contains 1/(2N) times the remainderHλ,E
0 (s) from Theorem 3.1 with λ = 2N . Now

taking E(ν) close to the function which is equal to 1 on [−1, 1] and 0 elsewhere,
one is led to Conjecture 2.2.

This conjecture, finally, makes the conjectured Approximation 2.1 plausible
through formal Fourier inversion (2.10).

5. From Approximation 2.1 to Approximation 1.1 via Approximation 5.2

After motivating Approximation 2.1 for averages of functions ψ2r(x), we turn
to a corresponding approximation involving the functions θ2r(x). For large N and
x > 2N , cf. (2.5),

1

N

N∑
r=1

θ2r(x) =
1

N

N∑
r=1

ψ2r(x)−
2

N

N∑
r=1

θ∗2r(x
1/2)

− 1

N

N∑
r=1

4rC2r log log x+O(x1/3 log2 x) + o(N).(5.1)

According to the Bateman–Horn conjecture [2], [3], applied to the special case
of prime pairs (p, p2 ± 2r), there should be specific positive constants 2C∗

2r =

C
[2]
2r + C

[−2]
2r such that

(5.2) θ∗2r(x) = {2C∗
2r + o(1)}x as x → ∞.

Here there is no need to study the Bateman–Horn constants in detail; our only
concern will be their mean value (apparently equal to one).

Conjecture 5.1. For x → ∞ one has

(5.3)
1

N

N∑
r=1

θ∗2r(x) = {2 + o(N−1/2)}x.

The motivation for Conjecture 5.1 is given by Conjecture 5.3 below. Combining
Conjecture 5.1 with formula (5.1) and Approximation 2.1, one obtains the (conjec-
tured)
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Approximation 5.2. For large N and x much larger than N , one has

(5.4)

1

N

N∑
r=1

{θ2r(x)− 2C2rx} = −{4 +O(N−1/2 log x)}
∑
ρ

xρ

ρ
− {1 + o(1)}N

− {4 +O(N−1/2 log x)}x1/2 − 1

N

N∑
r=1

4rC2r log log x+O(x1/3 log2 x).

To go from here to Approximation 1.1 we use the operation represented by∫ x

2
(1/ log2 t) d · · · . The sum on the left of (5.4) then becomes the sum on the left

of (1.5), cf. (2.1):

1

N

N∑
r=1

∫ x

2

1

log2 t
d
{
θ2r(t)− 2C2rt

}
=

1

N

N∑
r=1

{
π2r(x)− 2C2rli2(x)

}
.

In the application of the same operation to the right-hand side of (5.4) it is assumed
that contributions due to derivatives of the O-terms can be neglected. Ignoring the
log log x-term for a moment, the right-hand side of (5.4) then gives the right-hand
side of (1.5) for any δ ≤ 1.

The log log x-term (with its minus sign) ultimately leads to a contribution

(5.5) − 1

N

N∑
r=1

4rC2r

∫ x

2r

1

log2 t
d log log t ≈ − N

log2 2N
.

To assess its effect on ∆N (x) in (1.7), one still has to divide by li2(x
1/2) ∼

4x1/2/ log2 x. The result ∆N (x) in (1.8) will be small when x is much larger than
N2.

In support of Conjecture 5.1 we proceed with a conjecture involving the related
Dirichlet series

(5.6) D∗
2r(s) =

∑
p, p2±2r prime

log2 p

p4s
=

∫ ∞

1

x−4sdθ∗2r(x) (σ > 1/4).

Conjecture 5.3. For σ > 1/4 and N → ∞, one has

(5.7)
1

N

N∑
r=1

D∗
2r(s) =

2 + o(N−1/2)

4s− 1
+HN

2 (s),

with an analytic function HN
2 (s) that has good boundary behavior as σ ↘ 1/4.

The arguments supporting Conjecture 5.3 are similar to those given for Conjec-
ture 2.2. For 1/4 < σ < 1/2 one may write

Φλ
1,2(s)

def
= D∗

0(s) + 2
∑

0<2r≤λ

E(2r/λ)D∗
2r(s)

=
2AEλ

4s− 1
+

ζ ′(2s)

ζ(2s)
J(s, s) +

∑
ρ

1

2
Γ{(ρ/2)− s}J(ρ/2, s) +Hλ

3 (s),(5.8)

where D∗
0(s) =

∑
p (log

2 p)/p4s and Hλ
3 (s) is analytic for 1/4 ≤ σ < 1/2. The

functions J(s, s) and J(ρ/2, s) are analytic for 1/4 ≤ σ < 1/2; cf. (8.4) in the
Appendix. Hence, formally the poles at the points s = ρ/2 in the combination of
J-terms in (5.8) will cancel each other. However, one constituent of J(ρ/2, s) is an
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infinite series. It leads to a repeated series Σλ
2,2(s) when it is substituted into the

sum over ρ in (5.8):

Σλ
2,2(s) =

1

2

∑
ρ

Γ{(ρ/2)− s}
∑
ρ′

Γ(ρ′ − s)

×Mλ{ρ′ + (ρ/2)− 2s} cos{π(ρ′ − ρ/2)/2}.

This series is absolutely convergent only for 3/8 < σ < 1/2; for 1/4 < σ ≤ 3/8 the
sum over ρ = (1/2) + iγ has to be interpreted as a limit of partial sums

∑
|γ|≤B as

B → ∞.
In view of the similarity of the Hardy–Littlewood conjecture and our case of the

Bateman–Horn conjecture, it is reasonable to suppose that the differences

G∗
2r(s) = D∗

2r(s)−
2C∗

2r

4s− 1

have an analytic continuation to the half-plane {σ ≥ 1/4}. If that is correct, the
combination of the J-terms in (5.8) truly has no poles at the points s = ρ/2.
The repeated sum Σλ

2,2(s) then would have an analytic continuation to the strip

1/4 ≤ σ < 1/2, except for a pole at s = 1/4. The quadratic pole 1/(4s − 1)2 of
D∗

0(s) at s = 1/4 would be cancelled by the quadratic part of the pole of Σλ
2,2(s)

there. Finally, the residue of the pole of Σλ
2,2(s) at s = 1/4 would be O(λ(1/4)+ε)

by heuristics as in Section 4. Hence by (5.8), the residue at s = 1/4 of

1

N

N∑
r=1

E(r/N)D∗
2r(s) would be

1

2
AE + o(N−1/2),

thus leading to (5.7) when E(ν) is taken close to 1 on (−1, 1).
The proof of (5.8) is similar to that of (3.1) described in the Appendix. Here,

one would start with the integral obtained from (8.2) through replacement of one
of the quotients ζ ′(·)/ζ(·) by ζ ′(2 ·)/ζ(2 ·).

PART II. NUMERICAL RESULTS AND GRAPHS

6. Comparing averages of functions ω2r(x) with ω(x)

Which of the two terms on the right-hand side of (1.5), in the conjectured Ap-
proximation 1.1, is larger? One may write

∑
ρ

ρ li2(x
ρ) =

x1/2

log2 x

∑
ρ

xρ−1/2

ρ
+O

(
x1/2

log3 x

)
,

li2(x
1/2) = 4

x1/2

log2 x
+O

(
x1/2

log3 x

)
.

Combining the terms with ρ = (1/2)± iγ for γ > 0, one obtains

(6.1) T (x)
def
=

∑
ρ

xρ−1/2

ρ
=

∑
γ>0

cos(γ log x) + 2γ sin(γ log x)

γ2 + 1/4
.
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Thus relation (1.5) takes the form

(6.2)
QN (x)

def
=

∑N
r=1 ω2r(x)

N li2(x1/2)

= −[{1 +O(N−1/2 log x)}T (x) + 1 +O(N−1/2 log x)].

It is interesting that Riemann’s formula (1.9) leads to a combination similar to
the right-hand side of (6.2). Indeed, assuming RH one may write

(6.3)
2ω(x)

li(x1/2)
= −

[
{1 +O(1/ log x)}T (x) + 1 +O(1/ log x)

]
.

Littlewood’s work [18], cf. Ingham [13], implies that the function T (x) oscillates
unboundedly. More precisely, he showed that there are constants c, c′ > 0 and
arbitrarily large x, x′ such that

T (x) < −c log log log x, T (x′) > c′ log log log x′.

However, π(x) becomes larger than li(x), that is, ω(x) > 0, only for certain very
large x. The first such number is associated with the name of Skewes; cf. te Riele
[22], and Bays and Hudson [4]. Under RH one has T (x) = O(log2 x), and Kot-
nik [17] made it plausible that T (x) = O(log x). He also graphed the function
ω(x)(log x)/x1/2, cf. (6.3), for x ≤ 1014. On a logarithmic scale, his Figure 1 shows
rapid oscillations of amplitude greater than 1/2.

The Skewes story seems to have no analog for prime pairs; cf. Brent [6]. Here
we focus on the case of twin primes. Nicely [21] has counted prime twins up to
x = 1016. His table uses steps 10k from 1 · 10k through 9 · 10k for k = 1, 2, . . . , 12.
From there on the steps are 1012. Nicely’s table shows that for x going to 1016, the
quantity |ω2(x)| often becomes a good deal larger than li2(x

1/2). His table implies
16 sign changes of ω2(x) [which is minus his entry δ2(x)]. The first occurs between
106 and 2 · 106, the last between 7.5 · 1013 and 7.6 · 1013. Although ω2(x) oscillates,
it then remains positive until the end of Nicely’s table.

In a preprint on a ‘Skewes number for twin primes’, Marek Wolf [25] analyzed
the sign changes in ω2(x) up to 242 ≈ 4.4 · 1012. He found the first one at the twin
with p = 1369391. A table in his preprint lists the number of sign changes up to
2k for k = 22, 23, . . . , 42. Wolf found 90355 sign changes up to 242. He found none
between 222 and 225, none between 228 and 231, and none between 237 and 239.

In our range of x, the values of |T (x)| are smaller than one. In particular,

T (106) ≈ 0.41156, T (108) ≈ 0.17554,

T (1010) ≈ −0.42122, T (1012) ≈ −0.04014.(6.4)

These values were computed with the aid of von Mangoldt’s formula (1.10), by
which (for x > 1 and x not a prime power)

(6.5) T (x) = x−1/2
{
x− ψ(x)− log(2π)− (1/2) log (1− x−2)

}
.

The function ψ(x) =
∑

pm≤x log p was computed by summing the values of


logp x� log p for all the primes p ≤ x (generated with the sieve of Eratosthenes).
Here, 
logp x� is the exponent of p in the highest power of p not exceeding x.
The values of T (x) given in (6.4) were computed with an accuracy of at least 5
decimal digits. We were using Fortran double precision floating point arithmetic
which works with an accuracy of about 15 decimal digits, but precision is lost as
x grows when (6.5) is used to compute T (x). To illustrate this, we found that
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2N SN/C2 ΠN (106) ∆N (106) ΠN (108) ∆N (108)

100 73.6377551 605087 +0.09722 32417440 -0.08872
200 149.3252708 1226667 -0.02199 65739481 +0.03162
300 225.4407734 1851433 -0.12785 99245855 -0.09833
400 300.3132204 2465581 -0.23344 132202659 -0.23013
500 376.0636735 3086695 -0.32860 165551273 -0.18188
600 452.4693143 3714028 -0.31371 199186203 -0.19507
700 527.3827110 4328507 -0.34805 232164862 -0.18926
800 603.4536365 4951873 -0.42140 265651152 -0.21737
900 679.4011178 5574196 -0.48004 299079601 -0.28690
1000 754.4223630 6188960 -0.52230 332105577 -0.27582
2000 1511.5853400 12391586 -0.78001 665435604 -0.16751
3000 2269.6853566 18597363 -0.95390 999175096 -0.14446
4000 3026.0445409 24783891 -1.11135 1332114654 -0.23565
5000 3783.8474197 30975067 -1.28953 1665693721 -0.28111

Table 2. Values of SN/C2, ΠN (106), ∆N (106), ΠN (108), and ∆N (108)

ψ(1012) = 1000000040136.76, so that in the difference 1012 − ψ(1012) = −40136.76
only about seven digits are still correct and T (1012) = −0.04013860.

Alternative computations based on formula (6.1) and the first two million values
of γ gave the values T (106) ≈ 0.41276, T (108) ≈ 0.17469, T (1010) ≈ −0.41944, and
T (1012) ≈ −0.04010, i.e., an accuracy of only about 3 decimal digits.

7. Testing the conjectured Approximation 1.1

In the following we will consider the aggregate

(7.1) ΠN (x)
def
= π2(x) + π4(x) + · · ·+ π2N (x)

for certain large values of N and x. Setting

(7.2) SN = C2 + C4 + · · ·+ C2N ,

cf. (3.4), we compare ΠN (x) with 2SN li2(x) = (SN/C2)L2(x) (cf. Section 2). In
view of the conjectured Approximation 1.1, the difference is divided by N li2(x

1/2)
to obtain the quotient

(7.3)
ΠN (x)− (SN/C2)L2(x)

N li2(x1/2)
=

∑N
r=1 ω2r(x)

N li2(x1/2)
= QN (x);

cf. (6.2). For large N the quotient should have the form

−{1 +O(N−1/2 log x)}T (x)− {1 +O(N−1/2 log x)}.

Ignoring the O-terms, we will compare QN (x) with −T (x)− 1, setting

(7.4) QN (x) + T (x) + 1 = ∆N (x).

Tables 2, 3 give results for x = 106, 108, 1010, 1012. The values SN/C2 were
obtained by computing C2r/C2 from (1.3) and adding. For the values of ΠN (x) we



1222 JAAP KOREVAAR AND HERMAN TE RIELE

2N ΠN (1010) ∆N (1010) ΠN (1012) ∆N (1012)

100 2018498733 +0.23101 137743459486 -0.22449
200 4093181354 +0.19981 279320931774 -0.52374
300 6179575427 +0.04646 421698995095 -0.60678
400 8231900717 -0.00307 561752066806 -0.47345
500 10308323520 +0.09461 703447298670 -0.52336
600 12402663153 +0.00891 846368266787 -0.46665
700 14456137134 +0.06512 986498011024 -0.37686
800 16541312091 +0.03187 1128792535379 -0.48827
900 18623097684 -0.00710 1270856645797 -0.39850
1000 20679532323 +0.04311 1411187901897 -0.41454
2000 41434008965 -0.14700 2827502930522 -0.31142
3000 62214267139 -0.14273 4245571295213 -0.21865
4000 82946817735 -0.13473 5660383932743 -0.12392
5000 103718886923 -0.15324 7077896171945 -0.12569

Table 3. Values of ΠN (1010), ∆N (1010), ΠN (1012), and ∆N (1012)

added columns of numbers π2r(x). We next computed QN (x) from (7.3). Here we
used the approximations

L2(10
6) ≈ 8248.0297, L2(10

8) ≈ 440367.7942,

L2(10
10) ≈ 27411416.53, L2(10

12) ≈ 1870559866.82

and

li2(10
3) ≈ 34.6851, li2(10

4) ≈ 162.2412,

li2(10
5) ≈ 945.75959, li2(10

6) ≈ 6246.9757.

The table entries ∆N (x) are based on (7.4) and the approximations for T (x) in
(6.4).

In Figures 1–4 we show plots of ∆N (x) as a function of N (50 ≤ 2N ≤ 5000),
for x = 106, 108, 1010, and 1012. We have omitted the function values for 2 ≤
2N ≤ 48 since they very much dominate (and are atypical for) the other func-
tion values. In Figures 1 and 2 we compare ∆N (x) with the function ∆N (x) =

−(2N log2 x)/(8x1/2 log2 2N) as defined in (1.8).
We have made, but not given here, plots of ∆N (x) for several other values of x.

E.g., for x = 1011 and 2N = 1000, 2000, 3000, 4000, 5000, we found: ∆N (x) =
−0.229,−0.072,−0.034,+0.004, and −0.034, respectively (compare these values
with the corresponding values for x = 1010 and x = 1012 in Table 3).

Figures 5 and 6 show plots of ∆N (x) as a function of x (6 ≤ log10 x ≤ 12),
for N = 400 and N = 2500, respectively. The plots have been constructed by
connecting the values of ∆N (x) for x = 106 and for x = i×10j , j = 6, 7, . . . , 11 and
i = 1, 2, . . . , 10 by straight lines. The different behaviours of the plots of ∆400(x)
and ∆2500(x) may reflect the influence of the unknown O(N−1/2 log x)–terms, which
were neglected in the derivation of the error function ∆N (x) from (1.5).



AVERAGE PRIME-PAIR COUNTING FORMULA 1223

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

1000 2000 3000 4000 5000

Figure 1. ∆N (106) compared with ∆N (106) for 50 ≤ 2N ≤ 5000
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Figure 2. ∆N (108) compared with ∆N (108) for 50 ≤ 2N ≤ 5000
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Figure 3. ∆N (1010) for 50 ≤ 2N ≤ 5000
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Figure 4. ∆N (1012) for 50 ≤ 2N ≤ 5000
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Figure 5. ∆400(x) for 6 ≤ log10 x ≤ 12
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Figure 6. ∆2500(x) for 6 ≤ log10 x ≤ 12
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APPENDIX

8. Outline of the proof of Theorem 3.1

Extending an idea that goes back to Arenstorf [1], cf. [16], one is led to a rep-
resentation for E{(α − β)/λ} (Section 3) by an absolutely convergent repeated
complex integral in which α > 0 and β > 0 occur separately:

E{(α− β)/λ} =
1

(2πi)2

∫
L(c,B)

Γ(z)α−zdz

∫
L(c,B)

Γ(w)β−w

×Mλ(z + w) cos{π(z − w)/2} dw.(8.1)

Here the path L(c, B) = L(c1, c2, B) in the z = x + iy plane is taken to be of the
form

L(c, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the half-line {x = c1, −∞ < y ≤ −B}
+ the segment {c1 ≤ x ≤ c2, y = −B}
+ the segment {x = c2, −B ≤ y ≤ B}
+ the segment {c2 ≥ x ≥ c1, y = B}
+ the half-line {x = c1, B ≤ y < ∞},

and similarly for the w = u + iv plane. For −1/2 < c1 < 0 < c2 < 1/2, say, and
arbitrary B > 0, the absolute convergence of the repeated integral in (8.1) follows
from (3.6), (3.7) and Lemma 3.3.

For the verification of formula (8.1) one may write cosαt as a complex (inverse)
Mellin integral involving Γ(z):

cosαt =
1

2πi

∫
L(c,B)

Γ(z)(αt)−z cos(πz/2)dz,

and cosβt as such an integral involving Γ(w). Multiplying the two, doing the same
with sines and adding, one obtains a repeated complex integral for cos(α− β)t:

cos(α− β)t =
1

(2πi)2

∫
L(c,B)

Γ(z)α−zt−zdz

×
∫
L(c,B)

Γ(w)β−wt−w cos{π(z − w)/2}dw.

This integral is multiplied by Êλ(t); integration over 0 < t < ∞ and use of (3.5)
then gives the desired result.

Formula (8.1) leads to the following integral for Φλ(s) in (3.1), modulo a function
Hλ(s) that turns out to be analytic for σ > 0:

Φλ(s) =
1

(2πi)2

∫
L(c,B)

Γ(z)
ζ ′(z + s)

ζ(z + s)
dz

∫
L(c,B)

Γ(w)
ζ ′(w + s)

ζ(w + s)

×Mλ(z + w) cos{π(z − w)/2}dw +Hλ(s).(8.2)

For verification one introduces the Dirichlet series −
∑

Λ(k)k−z−s for the quotient
(ζ ′/ζ)(z + s) and −

∑
Λ(l)l−w−s for (ζ ′/ζ)(w + s). One then integrates term by

term, initially taking σ > 1 + |c1| to ensure uniform convergence. The result

∞∑
k,l=1

Λ(k)Λ(l)

ksls
E{(k − l)/λ}
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differs from Φλ(s) in (3.1) by

Hλ(s)
def
= 2

∑
0<2r≤λ

∞∑
n=1

Λ(n)Λ(n+ 2r)

{
1

n2s
− 1

ns(n+ 2r)s

}
E(2r/λ)

− 2
∑

0<2r−1≤λ

∞∑
n=1

Λ(n)Λ(n+ 2r − 1)

ns(n+ 2r − 1)s
E{(2r − 1)/λ}.

The first expression on the right is analytic for σ > 0, and so is the second: if
n and n + 2r − 1 are both prime powers, one of them must be a power of 2.
One may verify that Hλ(s) is the Mellin transform of a function hλ(x) which is

O(λ3x−1 log2 x+ λ log2 x) for x > λ.
Analytic continuation shows that under RH, one may take paths L(c, B) in

(8.2) with c1 = −η and c2 = (1/2) − η, where 0 < η < 1/2. Thus the integral
representation may be used for s = σ+ iτ with σ > (1/2) + η and |τ | < B; cf. [16].
Additionally requiring σ < 1, we now move the paths L(c, B) across the poles at
the points 1− s, 0 and ρ− s to lines L(d), given by x or u equal to d = −(1/2)+ η.
Here ρ runs over the complex zeros of ζ(·). The moves may be justified by Cauchy’s
theorem and the estimates in Lemma 3.3. On the relevant vertical lines, (ζ ′/ζ)(Z)
only grows logarithmically in Y , and auxiliary horizontal segments can be suitably
chosen between zeta’s complex zeros. Cf. Titchmarsh [23].

First moving the w-path one obtains a new repeated integral, along with a single
‘residue-integral’. It is convenient to write the latter in the form

(8.3)
1

2πi

∫
L(c,B)

Γ(z)
ζ ′(z + s)

ζ(z + s)
J(z + s, s)dz,

where by the residue theorem,

J(z + s, s) = −Γ(1− s)Mλ(z + 1− s) cos{π(z + s− 1)/2}

+
ζ ′(s)

ζ(s)
Mλ(z) cos(πz/2)(8.4)

+
∑
ρ

Γ(ρ− s)Mλ(z + ρ− s) cos{π(z + s− ρ)/2}.

Next move the z-path L(c, B) in the new repeated integral and the z-path in
the single integral to the line L(d). Thus we obtain another repeated integral, now
involving two paths L(d), and a single integral with path L(d), where d = −(1/2)+η.
Varying η ∈ (0, 1/2), one sees that the new integrals represent analytic functions
for −1/2 < σ < 1. The operation on the repeated integral produces a harmless
residue, namely, another copy of the single integral with path L(d). However, the
operation on the single integral yields the following residue:

(8.5) −Γ(1− s)J(1, s) +
ζ ′(s)

ζ(s)
J(s, s) +

∑
ρ′

Γ(ρ′ − s)J(ρ′, s),

where ρ′ runs over the complex zeros of ζ(·). Working out this residue with the aid
of (8.4), one obtains nine terms. Four of these supply the sum Σλ(s) of (3.8) in
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(3.1). The remaining five terms combine into the sum

(8.6)

V λ(s)
def
= Γ2(1− s)Mλ(2− 2s)− 2Γ(1− s)

ζ ′(s)

ζ(s)
Mλ(1− s) sin(πs/2)

− 2Γ(1− s)
∑
ρ

Γ(ρ− s)Mλ(1 + ρ− 2s) sin(πρ/2).

Here, the apparent poles at the points s = ρ cancel each other. The first term
provides the important pole-term at the point s = 1/2 in (3.1). Indeed, by the
pole-type behavior of Mλ(Z) at the point Z = 1 (Section 2),

(8.7) Γ2(1− s)Mλ(2− 2s) =
2AEλ

2s− 1
+Hλ

4 (s),

where Hλ
4 (s) is analytic for −1/2 < σ < 1. The final term in (8.6) generates simple

poles at the points s = ρ/2. A short computation shows that the residues at those
poles are all equal to −2AEλ, thus leading to the term −4AEλ

∑
ρ 1/(2s − ρ) in

(3.1).
To round out the proof of Theorem 3.1 we evaluate the inverse Mellin transform

of V λ(s) in (8.6). Taking c = (1/2)+η and x > λ, and moving the path to the left,
one finds that

1

2πi

∫
L(c)

V λ(s) x2s ds

s
= 2AEλx− 4AEλ

∑
ρ

xρ

ρ
+ g(x, λ).

Here for large λ and x/λ → ∞,

g(x, λ) = −{1 + o(1)}λ2

∫ 1

0

E(ν)ν dν ≈ −λ2/2

when E(ν) is close to 1 on (−1, 1).
By our hypothesis the double sum Σλ

2 (s) in (3.8) generates a pole at s = 1/2
with residue RE(1/2, λ) given by (3.3). Through Mellin inversion this becomes
2RE(1/2, λ)x; when added to 2AEλx, it gives the principal part

2
∑

0<2r≤λ

E(2r/λ) · 2C2rx of 2
∑

0<2r≤λ

E(2r/λ)ψ2r(x).

Other conjectural contributions of Σλ
2 (s) were discussed in Section 4.
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